On the Maximization of Information Flow Between Spiking Neurons
نویسندگان
چکیده
A feedforward spiking network represents a nonlinear transformation that maps a set of input spikes to a set of output spikes. This mapping transforms the joint probability distribution of incoming spikes into a joint distribution of output spikes. We present an algorithm for synaptic adaptation that aims to maximize the entropy of this output distribution, thereby creating a model for the joint distribution of the incoming point processes. The learning rule that is derived depends on the precise pre- and postsynaptic spike timings. When trained on correlated spike trains, the network learns to extract independent spike trains, thereby uncovering the underlying statistical structure and creating a more efficient representation of the incoming spike trains.
منابع مشابه
Learning reconstruction and prediction of natural stimuli by a population of spiking neurons
We propose a model for learning representations of time dependent data with a population of spiking neurons. Encoding is based on a standard spiking neuron model, and the spike timings of the neurons represent the stimulus. Learning is based on the sole principle of maximization of representation accuracy: the stimulus can be decoded from the spike timings with minimum error. Since the encoding...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملSTDP enables spiking neurons to detect hidden causes of their inputs
The principles by which spiking neurons contribute to the astounding computational power of generic cortical microcircuits, and how spike-timing-dependent plasticity (STDP) of synaptic weights could generate and maintain this computational function, are unknown. We show here that STDP, in conjunction with a stochastic soft winner-take-all (WTA) circuit, induces spiking neurons to generate throu...
متن کاملCommon-input models for multiple neural spike-train data.
Recent developments in multi-electrode recordings enable the simultaneous measurement of the spiking activity of many neurons. Analysis of such multineuronal data is one of the key challenge in computational neuroscience today. In this work, we develop a multivariate point-process model in which the observed activity of a network of neurons depends on three terms: (1) the experimentally-control...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2009